Disbudding – Using Sedation

In the archives you’ll find my article on the Dehorning Dilemma . Because I seem to like inspiring a bit of controversy, here is a video and instruction on how producers can sedate their kids (or calves) and disbud while the animal is semi-conscious. This drug also provides pain control (analgesia).  While some of you may wonder what could be controversial about pain control when performing painful procedures on animals, I have already come under a bit of criticism mostly from professionals who seem concerned that farmers can’t learn how to do this safely and animals will die. I, on the other hand, believe that most of us have the capacity to learn and deserve these options.

Excerpt #2: Mastering Basic Cheesemaking

cover - Copy

 

Chapter 7: Rennet-Coagulated Semi-Firm Fresh Cheeses

(From Mastering Basic Cheesemaking, 209 page ebook, 5.99 on Amazon)

In our last chapter we introduced a bit of rennet to help create our cheeses. Now we’ll move on to the largest family of cheeses—those that rely completely on rennet for coagulation. Most will still use bacteria, too, to produce acid, but the acid doesn’t cause the coagulation. Because these types of cheese coagulate before they get too sour, the final texture is much more pliable and sliceable, not crumbly and brittle. They also are less tart, able to age for long periods of time, and generally have more potential for complex flavor and aroma development.

At the end of the last chapter I told you that you are now going to need to apply some principles to your process—namely that every cheese relies upon a combination of time (during ripening, stirring, and draining); temperature (during ripening, stirring, and draining); and final acid content to create the final product. Fresh, soft cheeses are quite forgiving if you deviate a bit from the recipe steps, but cheeses that rely on rennet alone are a bit pickier. This chapter will give you practice paying attention to the nuances of these steps. It contains three recipes for three very different cheeses—quick mozzarella (the only one in this chapter that does not use any starter culture), feta, and a farmhouse-type cheese—you can master quickly and begin to feel more confident about your cheesemaking skills.

Steps for Making Rennet-Coagulated Fresh Cheeses

The cheeses in this chapter are a great transition from soft fresh varieties to the more complex cheeses that rely completely on rennet for their coagulation. Many of these are still used fresh, but are obviously great for different types of uses than their spreadable cousins. Some of the recipes in this chapter can even be transitioned into aged versions. If you are chomping at the bit to make some aged cheese, don’t worry, we’ll get to that very soon! The cheeses in this chapter will usually yield about 0.85–1.1 pounds per gallon of milk (0.4–0.5 kg per 4L), depending on how what type of milk is used and how they are drained.

Heat Milk

As with the other methods, the first step is getting the milk to the right temperature. This temperature will vary a bit depending upon the type of cheese being made, but it is typically right around 90°F (32°C). As in the previous method, a double-boiler type setup, with the pot of milk set onto a larger pot or into a sink filled with hot water, works best.

Add Culture

As in the previous method, bacteria cultures are added to the milk once it has been warmed to the ideal temperature at which they grow. Sprinkle the culture on the top of the warm milk and allow it to sit for a few minutes while it soaks up a bit of milk.

Ripen

During the ripening or incubation phase, the cultured milk must be held at the ideal temperature for a short period of time, usually 20–60 minutes. It is fairly easy to ripen the milk using the same double-boiler approach you used to warm it. Typically, covering the pot with a lid is enough to keep the milk warm for that period of time. It is a good idea to stir the milk at least once and double-check that the temperature hasn’t dropped. If it has, the milk can be gently rewarmed.

Add Calcium Chloride

As in the previous method, if calcium chloride is to be used, it is diluted and added about five minutes before the rennet and allowed to sit.

Add Rennet

As in the previous method, after carefully measuring the rennet, dilute or dissolve it in cool, non-chlorinated water. Before adding it to the milk, stir the milk using an up-and-down motion with a ladle or spoon. Stop stirring briefly and pour the diluted rennet over the top of the ladle, and then continue stirring for about a minute. Then hold the ladle to the top of the milk in several spots to help still the milk.

 

FAQ: Rennet and Coagulation

Q: If the milk isn’t coagulating, should I add more rennet?

A: Milk may not coagulate well for several reasons: The rennet may be too old, the water used to dilute the rennet may be too high in minerals, a bit of calcium chloride may be needed, or there may be sanitizer residue on your utensils. In any case, adding more rennet after the first addition is unlikely to work at all.

Q: If the milk cools down during coagulation, should I reheat it?

A: No, not until after the curd is cut. If you try to rewarm it, you will heat up the curd around the outside of the pot – the heat won’t transfer evenly to the center. The outside curds will likely get too warm.

Coagulate

After the rennet has been added, the milk must sit very still and not be bumped or stirred. Even vibrations from a counter or floor can cause tiny breaks in the coagulation. The coagulation period will usually last 30-60 minutes, depending on the type of cheese.

photo

A “clean break” showing translucent whey and a curd texture that is ready to cut

Check for Clean Break

This is really a sub-step of coagulation, but it is one of those that sounds so mysterious and brings about so many questions that I want to give it a full explanation. The curd is ready for the next step when it has formed a mass that can be cut without any loss of milk fat. You can check for this by doing the clean-break test: Make a small cut (about 2 inches [5 cm)] in the mass with your curd knife, slip the knife, with the flat side up, about 4 inches (10 cm) under the slit in front of it at about a 30-degree angle. Gently and slowly, lift straight up. The pressure of the knife will cause the cut to travel forward in the curd. If the break is smooth and clean, and the whey that leaks out from the break is not whitish, then a clean break has been achieved. If the break is not clean, wait about 5 more minute then try again. Different milk types and cheese recipes will create a different thickness and heaviness in the coagulated mass, but you will still look for the same result in the clean break.

 

Photo (in ebook)

Curd is cut first into vertical columns, then at an angle

 

Cut Curd

Once coagulation is complete, the mass is cut into smaller pieces called curds. (No, these are not the same thing as fresh, squeaky cheese curds.) Cutting exposes a lot of surface area, which allows the curds to quickly lose whey. Different types of cheeses have different goal curd sizes. Don’t worry if your curds are not perfect cubes—no one’s are—but do try to cut them as uniformly as possible. The first cuts create vertical columns (these are the easy ones). Next, the curds are cut horizontally; it is easier to make the horizontal cuts curds in a wide, shallow pot than in a tall skinny one so keep this in mind when choosing a vessel. After the cuts are made, most recipes call for “resting” or “healing” the curds for about five minutes. During this time, the curds will lose some whey from their surfaces. In doing so, they become a little less fragile so that they don’t break apart as easily when you start to stir in the next step.

 

(Photo in ebook)

During heating and stirring, the curds will shrink. The whitish whey seen in this photo is typical of goat milk cheese

 

Heat and Stir Curd

Most recipes produced by this method include a step in which the curds are heated (or “cooked”) and stirred. (The exception in this chapter is Feta) Just how hot and how much stirring is involved varies quite a bit. Whatever the instructions say, the stirring must be as gentle as possible to keep the curds from being shattered into pieces that are too small. In some cases this may even mean gently shaking the pot for a while instead of using a spoon or ladle. After the curds have been moved around a little, they will shrink and firm up a bit so that you can stir them more easily.

 

If the recipe involves heating the curds, it is very important to do so as slowly as possible— especially in the beginning—and no faster than the recipe calls for. If you heat them too quickly, only the outside of the curd will dry and firm, leaving a mushy interior with whey trapped inside. Trapped whey leads to soft, sour spots in the cheese. The goal of the heating and stirring step is to get the curds to the right texture for draining and pressing. For some cheeses, the goal texture is a tiny, very dry curd; for others, it’s a larger, more tender curd.

 

The heating and stirring step is a test of patience and observation. It is tough to accomplish well if there are a lot of distractions or you attempt to multitask. (When I make cheese in our home kitchen, as opposed to our commercial creamery, I find it harder to stay on task for the entire process.)

 

Tips for Stirring

  1. Stir or agitate the curds as gently as possible; if they start shattering, you are stirring too roughly.
  2. If any curds are too large, you can cut them into smaller pieces during the stirring step.
  3. Once the curds move easily and don’t break, stir only as gently as needed to keep them moving; if you stir too rapidly, they will become tough.
  4. Pay close attention to how rapidly the curds are heated; heating more slowly in the beginning is always better than too fast.

 

Drain and Press

Once the texture of the curd is just right, the next steps involve removing the curd from the whey by draining the pot, and then removing the whey from the curd by pressing it. Some recipes call for pouring the curds and whey through a strainer or directly into the cheese forms, while others have you gather the curds into a ball while they are still submerged in the whey.

 

Once the curds have been removed from the whey, they are placed in a form. Almost all cheeses need to be drained and/or pressed in a cheesecloth-lined form. (There are a couple of exceptions, such as cheeses with large, tender curds that won’t have any weight applied to them, like feta.) You must pick a combination of form and cloth that allow the curd to drain as quickly as possible, but without letting any curd escape. If the form has a very open pattern of holes and you apply too much weight, curd might mush out through the holes. On the other hand, if the form doesn’t have enough holes, the whey might not drain off of the cheese as quickly as you want, leaving whey trapped in the curd and an uneven pattern on the outside of the cheese.

 

Tips for Pressing

  1. Choose a form and cloth that allow the curd to release a lot of whey, but don’t allow the curd to pass through when pressed.
  2. If the curd is getting stuck in the cheesecloth, the cloth is too open or you are using too much weight.
  3. Observe the cheese when it is flipped: The outside should be smooth and closed by the last flip. If it closes too early, you are using too much weight too soon. If it isn’t closed by the end, apply more weight.
  4. You only need a mechanical press for cheeses where the curd is salted before pressing, such as cheddar, or cheeses where the curd is very tiny and dry, such as Parmesan. Most cheeses can be pressed with other types of weights such as water jugs or barbells.

 

Weight is added to help remove the whey and to reform the curds into a nice, smooth wheel. Cheeses that have an open texture, such as feta, are not pressed, while those with a very tight, closed texture have a lot of weight applied. During the pressing phase, the cheese is unwrapped, flipped over, rewrapped, and pressed about three more times. It is during these flips that you will decide if you are using enough pressure (see sidebar above).

 

You should think of the pressing phase as another ripening step. During pressing, the cheese will not only form into a wheel, but the bacteria will continue to grow and make acid. For this reason, the temperature of the room during pressing is important. Some recipes call for the temperature to drop by the end of pressing, but usually room temperature, 68–72°F (20–22°C), is ideal. It is essential that the right amount of acid be produced, so that the cheese will be safe for aging and have a balanced flavor. If too much acid develops, the curd will be sour and brittle. The home cheesemaker may not have the ability to measure this acid production with a pH meter (and pH strips won’t work for checking solid cheese curd), but over time you can train your taste buds to detect the perfect sourness.

(Photo in ebook) Dry salting a cheese

 

Salt

Once you have finished draining and pressing the cheese, it is important to both cool and salt it. By cooling the cheese, you quickly slow and then stop the growth of the bacteria, which will help prevent the cheese from getting too sour and possibly become brittle during aging (the extra acid damages the invisible structure of the cheese curds causing them to break apart). As you learned in chapter 2, salt will help stop the bacteria from growing too, but if the cheese is thick, the salt won’t make it all of the way to the center of the wheel for several days.

 

If you are dry salting, rub the first coat on all sides of the cheese, rewrap it in the cheesecloth, and replace it in the form. Set the cheese in a cool area, ideally about 50–55° F (10–12° C). By rewrapping the cheese you will help keep the salt close to the wheel and also prevent the cheese from changing shape before it cools and firms. The second coat of salt should be applied as the specific lesson indicates.

 

Store and Use

All of the cheeses in this chapter can be used immediately after they are finished, you don’t really even need to chill them. Some will benefit from a few days of resting in the refrigerator, though, as the salt and flavors will have a chance to comingle and smooth out. Many will last weeks in the fridge as long as they are tightly wrapped and protected from contaminating yeasts and molds. A little surface mold can simply be cut away and the rest of the cheese used.

 

What to Do with the Whey from Rennet-Coagulated Fresh Cheeses

The whey that is produced during the lessons in this chapter (with the exception of quick mozzarella [lesson 12])—and all similar recipes—contains many nutrients and some starter culture bacteria. The nutrients consist of a lot of whey protein and some milk sugar. Because the fresh whey from these cheeses isn’t very acidic (in fact, it is called sweet whey), it can be used for a variety of things, including making whey ricotta (see bonus recipe in chapter 8). In the kitchen, fresh sweet whey is great in soups, when making bread, and can even be used as a beverage (either plain or flavored). It can also be fed to chickens, pigs, and even calves. Because of the nutrients in the whey, it shouldn’t be poured down drains in large volumes, but the home cheesemaker doesn’t need to worry about that too much.

 

(Photo in ebook) Quick mozzarella stretches perfectly when the acid level and temperature are just right


Lesson 12: Quick Mozzarella

Quick mozzarella is truly a miracle recipe, but one that may not work every time if the milk you use varies a lot. It is one of those recipes that initially seems foolproof to many beginning cheesemakers, but in fact is not. Traditional mozzarella takes all day to make, uses starter culture bacteria for flavor and acid, and can be aged. Quick mozzarella, on the other hand, has added acid, more rennet, and can often be made in under an hour. The longer method definitely produces a more complex cheese with better texture, but the tradeoff is about five hours of your day! I recommend using store-bought whole cow’s milk the first few times you make the quick version. Because this type of milk is mass-produced, it is less variable and, therefore, less likely to misbehave. After you get a good feel for the process, give it a try on whatever other milk you prefer.

Mozzarella is in a category of cheese called pasta filata, which is Italian for stretched or kneaded dough. Most of the cheeses in this family, such as Kashkaval, caciocavallo, and provolone, are from Mediterranean countries. Latin American countries also produce traditional cheeses in this group, including Oaxaca, which is formed into a beautiful skein that you unroll as you use the cheese. Stretched-curd cheeses rely upon a precise balance of minerals in the curd, acid content, and temperature. If any of these things is not just right, the stretch will be less than ideal or nonexistent. But don’t be intimidated—I have yet to have the following recipe not work!

What You’ll Need

Milk: 1 gal. cold whole to partly skimmed milk

Acid: 1 1/2 tsp. (7.5 g) citric acid diluted in 1/8 cup (30 ml) cool water

Rennet: 1/8 tsp. (0.75 ml) double-strength vegetarian rennet diluted in 1/8 cup (30 ml) cool, non-chlorinated water

Salt: 1/2 tsp. (2.5 g) pure salt

Equipment: Two pots, thermometer, ladle, colander, heavy gloves, large bowl

Process in a Nutshell

Time: 60–90 min.

Steps: Add acid, heat milk, add rennet, cut curd, heat and stir curd, drain, prepare whey, stretch curd, chill

Step by Step

Add acid: Pour to the cold milk into one of the pots. Add the diluted acid, and, using the ladle, stir together well.

Heat Milk: Place the pot over medium heat or in a water bath on the stovetop. Heat the milk until it reaches 88°F–90°F (31-32°C). Turn off the heat.

Rennet and Coagulate:  Stir the milk using an up-and-down motion with the ladle. Stop stirring briefly and pour the diluted rennet over the top of the ladle. Begin stirring up and down again for 10 seconds. Hold the ladle to the top of the milk in several spots to help still the milk. Let the curd set until a clean break is achieved, about 5 minutes.

Cut Curd: Cut the curd into 1/4-inch to 1/2-inch (6 to 12 mm) cubes.

Heat and Stir Curd: Heat the curds very gradually, stirring gently, to 105°F (41°C) over 5–10 minutes.

Drain: Remove the pot from the heat. Position the colander over the second pot. Pour or ladle the curds into the colander and let the whey drain while you do the next step.

Prepare Whey: Add the salt to the pot with the whey. Place the pot over medium high heat and heat the whey until the temperature reaches 150ºF (66ºC). Tear off a small piece of the reserved drained curd and place it in the ladle. Immerse the curd in the hot whey for about 15 seconds and pull it out again. Gently squeeze and pull the curd to see if it will stretch. If not, heat the whey another 10ºF (6ºC) and test the curd again.

Cut and Stretch Curd: Maintain the whey at the temperature at which your test piece stretched. Cut the curd mass into quarters. Working with one piece of curd at a time, place the curd in the bowl of the ladle and immerse it in the hot whey until it is pliable, 30–60 seconds. Pull the curd out and work it gently as shown in the photos above; be very gentle and try to not overwork it. Reheat the curd as needed to maintain a pliable texture. Repeat the process about three times until the curd feels smooth and looks shiny; reserve the whey.

Chill: Fill the bowl with cold water. Place the formed balls in the water to chill and set the shape.

Store and Use: Use the mozzarella within a few hours, or chill some of the salted whey and store the mozzarella in it and refrigerate for up to seven days. If you want to use the mozzarella for pizza, wrap the balls in plastic and refrigerate for up to 1 week; it will melt beautifully after the first 2 days.

Troubleshooting

Curd is grainy, crumbly, won’t stretch: Too much acid, try using about 1/4 tsp. (1gm) less next time. Be sure to measure the citric acid very carefully.

Curd is firm, breaks when stretched: Not enough citric acid, try using about 1/4 tsp. (1gm) more next time. Again, be sure to measure the citric acid very carefully.

Curd stretched well, but end result is rubbery and bouncy: Curd is overstretched, overworked, or overheated. It is easy to squeeze out the butterfat during stretching. If the temperature of the whey is too hot, it can also melt the fat out of the curd. Keep practicing and be very gentle.

Recap

This cheese is a demonstration not only of how curd behaves, but also of how you can easily (and often accidentally) change its properties. The chemistry of making mozzarella is pretty fascinating: you are using acid and heat to manipulate the minerals and the way the curd structure moves—and in quite a different fashion than in the high-heat added-acid cheeses in chapter 4. If you ever move on to making traditional mozzarella, you will be doing the same manipulation, but by using the starter bacteria to make just the right amount of acid—this is the time-consuming part. If you had fun making mozzarella, you will probably love the bonus recipe below for little stuffed pillows of stretched curd cheese: burrata.

 

(Photo in ebook) Burrata stuffed with fresh ricotta and butter, dressed with olive oil and fresh thyme


Bonus Recipe: Burrata

This recipe is just for fun—and deliciousness! It combines the above recipe for making mozzarella with a recipe for making ricotta using whey and milk. Making the dumplings turn out just the way you want may take a bit of practice, but the results are worth it. And no matter how they turn out, you can still eat them!

Burrata, or burratina, is a rather new cheese that was created in the early 1900s as a way to use up bits of curd left over from forming mozzarella. Its name comes from burra, the Italian word for butter, and refers to the buttery texture of the filling. The recipe I have provided here includes a bit of butter in the filling, but you can have fun with it and fill burrata with some fairly creative combinations including ricotta and blue cheese, seasoned ricotta, and bits of mozzarella curd. On a 2015 trip to Italy, we enjoyed burratina affumicata, a tender, moist burrata that had been smoked in a tiny basket and served on a bed of fresh arugula.

What You’ll Need

Same as the recipe above for quick mozzarella, plus:

Milk: 1 qt. (1L) whole milk

Acid: 1 tsp. (5 g) citric acid diluted in 1/8 cup (30ml) cold water

Butter: 1 tbsp. (14 g) unsalted or salted butter

Seasoning: Salt and pepper to taste

Salt: 1 tsp. (5 g) pure salt

Equipment: Fine-mesh sieve, spatula, 2 small bowls, ladle, plate, serving spoon, ladle, heavy gloves

Process in a Nutshell

Time: 2 hr. Active

Step by Step

Follow the recipe for quick mozzarella above to just before you stretch the curd, and then continue with the following steps:

Heat Whey: Pour the milk into the pot with the whey, and place the pot over medium high heat. Heat the mixture, stirring gently, until the temperature reaches 175ºF (79ºC) and it coagulates into curds.

Add Acid: If the liquid is still white and milky, stir in the diluted citric acid solution. Remove the pot from the heat and let set for 5 minutes.

Drain Curd: Using the small sieve, skim the curds from the top of the whey and let drain over the pot for about 3 minutes.

Finish Filling: Using the spatula, scrape the ricotta into the bowl. Stir in the butter and salt and pepper to taste. Set aside.

For the dumplings:

Heat Whey: Stir the pure salt into the whey. Check that the temperature of the whey is still 175ºF (79ºC).

Cut and Stretch Curd: Cut the curd mass into 10–12 even pieces. Working with one piece of curd at a time, place the curd in the ladle and immerse it the hot whey until it is pliable, 10–20 seconds. Place it on the plate and gently work it by folding it in toward the center in a circular pattern and pressing softly down; reheat the curd as needed to maintain a pliable texture. Repeat the process about two times just until the curd feels smooth and looks shiny. Use your fingers to shape it into a flat patty about 3 inches by 3 inches (7 cm by 7 cm).

Fill and Form Dumplings: Working with one patty at a time, spoon a small amount of the ricotta filling into the center. To form the packet, bring two opposite sides of the curd patty together, then the other two, making a small purse. Press the top of the gathered edges gently over and lay it, gathered-side down, onto the ladle. Carefully immerse the dumpling in the hot whey until the edges are sealed, 5–8 seconds.

Chill: Serve the burrata immediately, or fill the second bowl with cold water and place the dumplings in the water just long enough to firm them up, about 10 minutes.

Store and Use: Use the burrata within a day for the best texture. Serve alone or drizzled with a high-quality aged balsamic vinegar, chopped fresh basil, and garden-fresh tomatoes, or use in any recipe calling for burrata.

 

 

(Photo in ebook) Feta can be marinated in oil with herbs, spices, and other ingredients such as sun dried tomatoes


Lesson 13: Feta

I often refer to feta as the gateway cheese, not because it will transform someone who doesn’t like cheese into a cheese lover, but because it is the perfect first cheese for those wanting to learn how to make more complicated cheeses such as those in the next chapter. Feta can also easily be aged, even at home with no special equipment. It is the ideal cheese to make now and enjoy later.

The name “feta” is most correctly applied to this cheese when it is made in Greece and uses mostly sheep’s milk and a bit of goat’s milk. But many other countries have made virtually identical products by other names. Whatever you call it, this cheese is salty, tangy, and may be crumbly and dry or soft and creamy depending on the techniques used during cheesemaking. Feta and its Mediterranean cousins such as Telemes, a cow’s milk version, are salty because they are preserved in brine. Salt has long been a way of preserving food, and in seaside countries it lent its talent to preserving cheese. Even when stored in heavy salt, feta continues to age, developing flavor and changing in texture. I’m going to explain how to salt it for use now and later, and also how to age it in an oil marinade.

What You’ll Need

Milk: 1 gal. (4 L) whole to partly skimmed milk

Culture: 1/8 tsp. (0.2 g) Flora Danica

Calcium Chloride (optional): 1/8 tsp. (0.7 ml) calcium chloride diluted in 1/8 cup (30 ml) cool water

Rennet: 1/16 tsp (0.35 ml) double-strength vegetarian rennet diluted in 1/8 cup (30 ml) cool, non-chlorinated water

Salt: 2 tbsp. (30 g) pure salt

Equipment: Pot, thermometer, ladle, cheesecloth, colander, tub with a lid

Process in a Nutshell

Time:  2 1/2 hr. active, 12 hr. inactive

Steps: Heat milk, add culture, ripen, add calcium chloride (if using), add rennet, ripen and coagulate, cut curd, heat and stir curd, drain, salt, store and use

Step by Step

Heat Milk: Pour the milk into the pot, and set the pot into a warm-water bath. Heat the milk until the temperature reaches 88–90°F (31–32°C).

 

Add Culture: Sprinkle the culture on top of milk and let it set for 3–5 minutes. Stir gently for 2–5 minutes.

Ripen: Maintain the temperature of the milk at 88°F–90°F (31°C–32°C), stirring occasionally, and let ripen for 1 hour.

Add Calcium Chloride (optional): Stir in the diluted calcium chloride, if using, and let set for 5 minutes.

Add Rennet: Stir the milk using an up-and-down motion with the ladle. Stop stirring briefly and pour the diluted rennet over the top of the ladle. Begin stirring again for 1 minute. Hold the ladle to the top of the milk in several spots to help still the milk.

Coagulate: Maintain the temperature of the milk at 88–90°F (31–32°C), and let the curd set until a clean break is achieved, about 45 minutes.

Cut Curd: Cut the curd mass into 3/4-inch to 1-inch (2-cm to 3-cm) cubes, and let rest for10–15 minutes.

Heat and Stir Curd: Maintain the temperature of the curds at 88–90°F (31–32°C) and stir gently for 20 minutes; the curds will be very tender and soft. Let the curds rest for 5 minutes.

Drain: Position the colander over another pot and line it with the cheesecloth. Carefully ladle most of the curds from the pot into the lined colander. Gently pour the rest of the curds and whey into the colander. Tie the corners of the cheesecloth together. Tie the bundle to the handle of the ladle and set across the top of the pot. Allow the curds to drain at room temperature, 68–72°F (20–22°C) for 12 hours. The bundle should not touch the whey; drain the whey if too much collects at the bottom. If needed, you can tighten the bag a bit, but don’t squeeze the curds.

Salt: Unwrap the feta and cut it into 1-inch-thick (3-cm-thick) slabs. Sprinkle salt on all sides of these slabs and place in the tub and cover or a zipper lock bag. Let set at room temperature, turning occasionally to coat with the salt and whey, for 8 hours.

Store and Use: Use the fresh feta right away, or tightly cover and refrigerate.

Variations

Aging or storing in brine: Follow the steps above and reserve the salty whey from the salting step. Pack the slabs as tightly as possible in a tub or jar, filling the spaces with bits of the cheese that might break off or not fit otherwise, and pour the reserved brine over the top. Add 1 teaspoon (5 g) of pure salt and let set at room temperature, 68°F–72°F (20°C–22°C), for 8 hours. The cheese should create its own brine. If there is still airspace in the tub but the brine covers the cheese, cover the cheese and brine with a piece of plastic wrap, and then put the lid on the tub. Let age for several weeks to months. Check the cheese occasionally for flavor and texture.

 

Aging or storing in oil: Follow the steps above for fresh feta, but let the cheese mellow for three days in the refrigerator. During this time, drain the brine from it daily. Cut the slabs into bite sized cubes and place in a glass jar. Cover the cubes with olive oil or a mixture of olive oil and another, less likely to solidify oil, such as rice bran oil, and screw the lid on the jar. Don’t use olive oil that is too high quality or the flavor will overwhelm the cheese. You can add herbs to the oil, if desired. Age the marinated cheese in the back of the refrigerator for up to one year.

Troubleshooting

Curd of the finished cheese is sponge-like with hundreds of small, oval shaped holes (or eyes): This is called “early blowing” and is a sign of contamination by coliform bacteria. Coliforms are from the environment and can be harmless, but may also include some extremely dangerous, disease-causing germs. They can contaminate raw milk or be introduced into pasteurized milk after it is heat treated. Throw the batch out and improve your equipment sanitation. If you are using raw milk, choose a different source (see chapter 2).

Too salty: Feta is supposed to be salty, so this is not necessarily a legitimate problem. But if you prefer yours less salty, add less salt and don’t age it. For feta that is aged in brine, you can soak it briefly in water to rinse away much of the salt before using.

Not tangy enough: The room was probably not warm enough during draining. Try not letting the temperature drop below 72ºF (22ºC) if possible, or hanging the curds for an hour or so longer to let more acid develop.

Too soft: Some milk types will naturally result in a softer feta, but cutting the curds too small or squeezing them too much during draining can also lead to a softer cheese. The curds need to retain enough whey during draining to help develop acid. (It’s the acid that helps make the cheese more crumbly.) Also make sure that the room is the right temperature during draining so that the bacteria can make enough acid. (If the curds are soft because not enough acid is made, they also probably won’t taste tangy enough.)

Got soft during aging in brine: This means that there was not enough calcium in the milk and therefore in the whey brine. Remove the soft cheese from the tub and make a new brine of 1 quart (500 ml) water, 6 tbsp. (90 gm) pure salt, 1/2 teaspoon (2.5 ml) white or cider vinegar, and 1 tsp. (5 ml) calcium chloride. Next time add calcium chloride to the natural brine in the tub before aging.

Recap

Feta is such a versatile cooking cheese. You can use it on and in just about anything, often foregoing added salt. The fact that it is so easy to age also makes it a great cheese to have on hand. You can add flavors such as herbs and spices to the curd just before draining or to an oil marinade.

 

(Photo in ebook)Salting a fresh, farmhouse goat’s milk wheel


Lesson 14: Farmhouse Cheese

Farmhouse, farmstead, farmer’s, cottage, landholder—all of these terms have been applied to simple cheeses made to be eaten young or slightly aged. Usually made from raw milk and lightly cooked and lightly pressed, they are simple, pleasant, and versatile. Because the curd is stirred and heated a bit, and much of the whey is removed by pressing, these cheeses have a longer shelf life than the paneer in chapter 4. This recipe is also not much different from one for a cheese that could be aged for longer. It is a great one to boost your confidence and get you ready for the next step on your journey.

What You’ll Need

Milk: 2 gal. (8L) whole milk

Culture: 1/4 tsp. (0.4 g) Flora Danica

Calcium Chloride (optional): 1/4 tsp. (1.25 ml) calcium chloride diluted in 1/4 cup (60 ml) cool water

Rennet: 1/8 tsp. (0.7 ml) double-strength vegetarian rennet diluted just before use in 1/4 cup (60 ml) cool, non-chlorinated water

Salt: 2 tbsp. (30 g) pure salt

Equipment: Pot, thermometer, ladle, cheesecloth, tray, form, water jug or other weight for pressing, tub with lid

Process in a Nutshell

Time: 3 hr. active, 4–6 hr. plus 3 days inactive

Steps: Heat milk, add culture, ripen, add rennet, ripen and coagulate, cut curd, heat and stir curd, partial drain, drain and press, salt, store and use

Step by Step

Heat Milk: Pour the milk into the pot, and place the pot over another pot of water on the stovetop. Heat the milk until the temperature reaches 88–90°F (31–32°C).

Add Culture: Sprinkle the culture on top of milk and let it set for 3–5 minutes. Stir gently for 2–5 minutes.

Ripen: Maintain the temperature of the milk at 88–90°F (31–32°C), stirring occasionally, and let ripen for 30 minutes.

Add Calcium Chloride (optional): Stir in the diluted calcium chloride, if using, and let set for 5 minutes.

 

Add Rennet: Stir the milk using an up-and-down motion with the ladle. Stop stirring briefly and pour the diluted rennet over the top of the ladle. Begin stirring again for 1 minute. Hold the ladle to the top of the milk in several spots to help still the milk.

Coagulate: Maintain the temperature of the milk at 88–90°F (31–32°C), and let the curd set until a clean break is achieved, about 45 minutes.

Cut Curd: Cut the curd mass into 3/8-inch (1-cm) cubes, and let rest for 5 minutes.

Heat and Stir Curd: Heat the curds very gradually, stirring gently, to 100°F (38°C) over 30 minutes; increase the temperature a bit more slowly in the beginning, especially during the first 15 minutes. If needed, cut any large curds into smaller pieces during stirring.

Maintain the temperature of the curds at 100°F (38°C) for 20 minutes, stirring constantly and gently until the curds are uniform in size and feel tender but springy, similar to the texture of a hard-boiled egg white, about 15 minutes. Remove the pot from the heat and let the curds set for 5 minutes.

Partial Drain: Scoop out the whey to the level of the curds; reserve some of the whey. Using your hands, work the curds gently into a solid mass about the size of the form that you are using.

Drain and Press: Place the form on a tray or a drain board. Line the form with the cheesecloth and dampen it with a bit of whey. Using your hands, lift the curd mass out of the pot and press it gently into the form. When it evenly fills the form, fold the excess cloth over the curd, set the follower on top, and press down gently. Add about 1 pound (0.5 kg) of weight. Press for 15 minutes at room temperature, 68–72°F (20–22°C).

Remove the weight and the follower. Then remove the wrapped cheese from the form, unwrap it, and flip it over. Rearrange the cheesecloth in the form, and then replace the cheese, pressing the cloth into the form along with it; the cheese should still look a bit wrinkled and the rind not yet smooth. Continue to press with only 1 pound (0.5 kg) of weight for 30 minutes more.

Repeat the steps above, flipping the cheese and rearranging it in the form; this time the rind should be smoother, but still not evenly closed. Add another 1 pound (0.5 kg) of weight for a total of 2 pounds (1 kg) and continue to press for 60 minutes more.

Repeat the steps again; now the rind should be very even, perhaps with a few small openings. If not, you may add up to 2 pounds more weight. Continue to press for 4 hours more.

Remove the cheese from the form, cut off a tiny piece, and taste it. It should have a very mild tang and taste milky with a hint of buttermilk. If it isn’t slightly tangy, press it for 1 hour more and taste it again.

Salt: When you have achieved the desired tang, take the cheese from the form, unwrap, and rub the cheese all over with 1 tbs. (15g) of the salt. Replace the cheese in the form, without the cheesecloth, and let it set for 30 minutes. Remove the cheese and rub it with the remaining 1 tbsp. (15g) of salt.

 

Place the cheese in the tub, cover, and let it set in the refrigerator for 8–12 hours. After setting there may be a bit of salty whey at the bottom of the tub, if so rub the whey all over the cheese and flip it over. Repeat this process 2–3 times daily for the next 3 days. During this time the cheese will change in texture and flavor as the salt moves through the wheel and the cheese mellows.

Store and Use: Pat the cheese dry with paper towels and wrap tightly in plastic wrap or a plastic bag. Use or store in the refrigerator for up to 4 weeks. It will last longer and even age if there is very little air in the container and exposure to molds in the air outside of the fridge is limited. If a little mold develops on the outside, either cut it off before eating, or rub it with a bit of vinegar.

Troubleshooting

Curd of the finished cheese is sponge-like with hundreds of small, oval shaped holes (or eyes): This is called “early blowing” and is a sign of contamination by coliform bacteria. Coliforms are from the environment and can be harmless but may also include some extremely dangerous disease causing germs. They can contaminate raw milk or be introduced into pasteurized milk – after it is heat treated. Throw the batch out and choose a different source if you are using raw milk (see chapter 2) also improve your sanitation and preparation of equipment.

Wrinkles or openings in rind after pressing: You probably did not apply enough pressure and/or the room got too cool. You can usually fix this problem at the end of pressing by heating a pot of water to about 160°F (71°C) and then immersing the wheel into the hot water for 1–2 minutes. Quickly replace the cheese in the form with double the original weight and press for 10 minutes. This should smooth out the surface.

Cheese tastes bland: Use 1/8 tsp. (0.2g) more culture the next time or extend the ripening phase by about 15 minutes. Also make sure the room isn’t too cool during pressing. When young this isn’t a super complex cheese by any means, but it shouldn’t be super boring either.

Cheese tastes sour: Next time try either using 1/8 tsp. (0.2g) less culture or shortening the pressing time by about 15 minutes Also be sure that the room isn’t too warm during pressing and salting.

Recap

Let’s consider the differences between this recipe and feta. You can certainly see and taste that the farmhouse cheese as salty, crumbly, and tangy as feta. You will notice some close similarities in the first few steps of the cheesemaking process, but then see how they diverge during the stirring phase. The feta wasn’t stirred and therefore retained more moisture in the curd. That moisture helped create the crumbly texture and tartness that are the hallmarks of feta. When curd is stirred and heated for longer, it loses more moisture earlier. This has a profound effect on the final texture of the cheese. Let’s move on to the next level: cheeses for aging.

 

 

 

Excerpt #1 Mastering Basic Cheesemaking

I have just published on Amazon an ebook (5.99) for those just getting started making cheese. It is a different approach than any cover - Copyother beginning book available. The recipes are lessons, each one builds organically on the previous and adds a layer of skills and knowledge.  I hope you will give the book a try or share its availability with anyone who might be interested! Remember, you don’t need a Kindle device, you can download a FREE Kindle for PC to your computer and then read in color.

Here is an excerpt from the book:

Chapter 4: Quick and Simple Cheeses

We’re going to start our journey by making some really fun, tasty, super simple cheeses. The first lessons in cheese and milk chemistry are also the first dose of the magic of making cheese. In all of the lessons in this chapter, we’ll be using heat and added acid to force the solids in the milk—the protein, fat, and minerals—to separate from the watery portion. At the unseen level, milk behaves very differently when it is hot compared to when it is cold. It also reacts radically to having something tangy and acidic added to it—it curdles. The hotter the milk, the less acid is needed to produce this amazing chemical reaction, but—and here’s your first important milk chemistry lesson—the hotter the milk when the acid is added, the more chewy the end product will be.

Steps for Making Quick and Simple Cheeses with Heat and Added Acid

This quick, super easy method includes just three basic steps. It produces a family of versatile fresh dairy products, including such classics as Italian ricotta and Indian paneer. Most recipes in this chapter will yield 1.5–2 pounds of cheese per gallon of milk (0.7–0.9 kg per 4L) depending on whether the curd is pressed or not.

Heat Milk

This method uses high heat ranging from 175ºF to 220ºF (79ºC to 100ºC) to form curds in the milk. Heat does several things to milk (including destroying bacteria and enzymes), and the changes it causes depend on both the temperature and how long the milk remains at that temperature. For the purpose of making high heat and acid cheeses, the heat does two things: First, it makes some of the proteins in milk stick together. This makes these cheese types higher in protein and clumpier in texture. Second, the heat helps the acid to coagulate the curd. The higher the heat, the less acid is needed.

 

FAQ: Warming MilkQ: After milking do I have to chill the milk before I make cheese?A: No. One of the best things you can do if you have access to milk straight out of the animal is to start the cheesemaking or milk fermentation process right away. Don’t wait more than an hour, though, as other bacteria in the raw milk will start to grow and possibly cause quality or health problems in the product. Q: How often should I stir the milk while it is warming?

A: That depends on how quickly you are heating it. If it the pot is sitting directly on the hot burner, the milk should be stirred constantly. But, if it is sitting in a sink filled with hot water, you should stir it every few minutes.

Q: If the milk burns a bit, can I still use it to make cheese?

A: In theory, yes, but the flavor will be tainted. It is better to send it to the compost pile and spend the rest of the day reading a good book.

Q: If the milk gets too warm, what do I do?

A: If the milk gets a little warmer than the goal temperature, you can set the pot in a sink of cool water and stir it until it cools down to the desired temperature. But, if it gets really hot, say about 170°F (77°C), consider making it into yogurt or ricotta.

 

Burrata step 6 Add Acid

Once the milk has reached the goal temperature, acid is added to make the curds separate from the whey. Slowly drizzle the acid into the milk while stirring gently. As soon as the acid is added, all of the proteins in the milk will begin to clump and form curds. (The first time you see this, it is truly magical.) Continue stirring very gently to avoid breaking the curds up into little pieces.

 

 

Drain Curd

Once the curds and whey have separated in the pot, the curds are drained. This process might be as simple as scooping and Burrata Step 7 apouring the steaming curds into a cheesecloth-lined colander, or you might follow this step with gentle pressing to form a solid cheese. Remember the whey from high-heat cheeses is extremely hot so place the colander over another pot or in the sink to keep from getting splattered.

 

Store and Use

You can use quick and simple cheeses right away, store in the refrigerator for about a week, or in the freezer for up to many months. Before storing, cover or wrap the cheese tightly in to keep out unwanted flavors and yeasts and molds. These cheeses don’t have a long shelf life and are prone to spoilage because they are so moist.

What to Do with the Whey from Quick and Simple Cheeses

The cheeses in this chapter will create whey that contains some milk sugar, acid, a bit of fat, and some protein (but not much). There isn’t much nutrition in it, especially compared to the whey we’ll collect in chapters 7 and 8, so it isn’t good for as many uses. You can use it to water acid-loving plants (such as evergreen trees, azaleas, and most berries) or pour it on compost or down the drain.

IMG_8245

 

 

Ricotta three ways, clockwise bottom left: Acidified with cider vinegar, orange juice, and wine


Lesson 1: Whole-Milk Ricotta

There is a whole family of fresh cheeses made with milk, whey, or a combination of whey and milk to which acid is added. Of these, North Americans may be most familiar with ricotta, but it comes in many other guises around the world including brocciu (BRO-shu) from Corsica (made from sheep’s whey and milk) and anari from Cyprus (made from goat’s or sheep’s whey and milk). While the fresh versions are better known, the cheeses can be dried and heavily salted to create tangy, pungent grating cheeses. Greek mizithra (made from goat’s or sheep’s whey and milk) and Italian ricotta salata are two well-known examples, but gauze bags of traditional anari can also be seen hanging in of the windows of Cypriot cheesemakers. This is your first lesson in cheese anthropology; you will learn as we work together that pretty much every cheese has a doppelganger or two out there. So without further ado, let’s make our first cheese!

What You’ll Need

Milk: 1 gal. (4 L) whole milk

Acid: 1/2–2/3 cup (118–158 ml) cider vinegar, or fresh or bottled lemon juice

Salt: Any type of salt, even table salt with added iodine, to taste (here it is merely a flavoring, not a preservative)

Utensils: Pot, spatula, thermometer, ladle, cheesecloth, colander

Process in a Nutshell

Time: 10 min. active, 25–50 min. inactive

Steps: Heat milk, add acid, set, drain, salt, store and use

Step by Step

Heat Milk: Pour the milk into the pot, and place the pot over medium-high heat. Heat the milk, stirring constantly and scraping the bottom of the pot with the spatula, until the temperature reaches 180–185ºF (82–85ºC). If the milk starts sticking to the bottom of the pot, lower the heat and continue stirring.

Add Acid: Remove the pot from the heat. Slowly drizzle the vinegar or lemon juice into the milk while stirring gently; the curds will begin to separate immediately. Continue stirring gently until the whey is a translucent yellow, about one minute. Watch closely and stop stirring as soon as the whey turns clear.

Set: Let the curds set in the pot, uncovered, for 10 minutes; this gives them time to collect and cool a bit.

Drain: Position colander over another pot or in the sink. Dampen the cheesecloth and line the colander. Carefully ladle most of the curds into the colander, and then gently pour the rest of the curds and whey into the colander. Let the curds drain until they reach the desired texture, 15–30 minutes. (If you want the curds to be soft and moist, drain them for less time. If you want drier curds that are easy to make into a shape, drain longer.)

Salt: Add salt to taste, if desired. (I usually don’t add salt since the ricotta is most likely going to be used in a dish with added salt, such as lasagna.)

Store and Use: Use the ricotta right away, or tightly cover and store it in the refrigerator for up to 5 days.

Troubleshooting

Curd is too small or doesn’t form: Try stirring more slowly when adding the acid, adding more acid, or increasing the heat.

Cheese is too sour: Try adding less acid the next time and adding it more slowly so that you can see if the curd separates. If it is just too sour to use, try adding a pinch of baking soda to the final product to neutralize the acid.

Recap

Wasn’t that easy? Have you tasted it yet? The ricotta will be simple, a bit tangy, and have a pleasant cooked milk taste. Milk ricotta (we’ll learn how to make whey ricotta later) can be made from any type of milk—skim from the grocery store, rich, creamy sheep’s milk straight from the pail, even camel milk, should you have one of those lovely beasts around—as long as it’s fresh and of high quality. But, the amount of cream or butterfat in the milk you select will have a huge influence on the texture of the cheese. For ricotta a certain amount of fat will help make it—brace yourself—creamy, but if you try to make it from something like half-and-half or cream, you will create a very different product. Speaking of cream, let’s move on to our next lesson!

Burrata – Forming the Dumplings

As an augmentation to the article I wrote for the summer culture the word on cheese magazine http://culturecheesemag.com/diy/beautiful-homemade-burrata , here are step by step photos of how to make burrata sachets, dumplings, packets or whatever you want to call them!

When the mozzarella texture is just right, you are ready to form the outside

When the mozzarella texture is just right, you are ready to form the outside

Place the ball on a plate and gently flatten it with your fingers, making it as even as possible

Place the ball on a plate and gently flatten it with your fingers, making it as even as possible

Place a well packed dollop of the ricotta and butter mixture in the center

Place a well packed dollop of the ricotta and butter mixture in the center

Gather two sides together in the middle, overlapping and press them together. Gather the other two sides, squeezing closed any openings, and overlap in the center.

Gather two sides together in the middle, overlapping and press them together. Gather the other two sides, squeezing closed any openings, and overlap in the center.

Place the closed packet on the ladle, with the overlapped edges down and immerse the bottom into the hot whey for a few moments, this seals the packet

Place the closed packet on the ladle, with the overlapped edges down and immerse the bottom into the hot whey for a few moments, this seals the packet

Serve immediately or cool in bowl of cold water then wrap and chill. Best right away, though!

Serve immediately or cool in bowl of cold water then wrap and chill. Best right away, though!

Aging Cheese on Wood Shelves and Food Safety – a Non-Issue

Wood Shelves

Don’t be afraid!

As a person who tends to want to follow rules, it is sad to be reminded that a good portion of food production regulations have little to do with actual food safety, rather they are the result of a ponderous, rigid system that steam rolls forward, sometimes based more on the ease of generalizing rather than the complexity of reality. The FDA has never liked wood shelves, especially when you sit food, in this case naturally rinded cheese, directly on its porous surface. Wood does not fit their Good Manufacturing Practice (GMP) model for a cleanable surface. While wood aging shelves have technically never been okay with the FDA, they have until now been mostly ignored and the decision to allow them been left to individual states .In many” big cheese” states, the regulators defer to the scientific knowledge of the leading expert within each state. For example, in both Oregon and Wisconsin (where at least 30 million pounds of cheese is aged on wood each year) the departments of agriculture have an official stance of “no wood shelves”. But in both states if a cheesemaker gets a thumbs up from the academic expert regarding their maintenance protocol for the shelves, then they have been allowed.

Isn’t that sensible? Did you hear me mention the words “scientific knowledge”? Let’s review what is well researched and known about wood shelves. (I’ll give you some references at the end of this post). Guess how many outbreaks of food borne illness they have been implicated in since the dawn of cheesemaking? Zero. This doesn’t mean that pathogens can’t exist on a wood shelf. If a cheese is contaminated and the wood poorly cared for, it will pass it to the shelf, no matter what material it is made from. Contamination of any aging shelf can happen when poor practices occur at any stage of cheese production, but it is not any more likely when wood is used. Bottom line.

Pros and Cons

So why do cheesemakers and affinuers (the folks that age cheese) love wood shelving? Tradition? Romance? Practicality? In the days before the invention of plastic, that ubiquitous, malleable material that we now take so for granted, wood was the logical and singular option. But fortunately it was also perfect. Like naturally aging cheese, wood “breathes”, it holds moisture without being wet, pulling it both out of the cheese, but also helping keep the aging space at a steady level of humidity. Not unlike the natural stone walls and bricks of the pre-modern aging space. Wood shelves used in aging room also take on the same family of fantastically helpful microflora – yeasts, molds, and especially bacteria – that help create distinctive, out-of-this-world cheeses. The usefulness of these microbes has not only to do with flavor, but also with the final safety of the cheese.

Given what I have just told you about how awesome wood shelving is, why isn’t everyone using it? (At least 60% of American Cheese Society cheesemaker members do) Or at least trying to use it? First it is, not surprisingly, highly discouraged thanks to the stance of our federal friends.  Second, the knowledge of how to properly care for wood is tucked away in the minds of a few and only a smattering of books and papers. Third many make only fresh cheeses where aging is not used. And finally, it is more work. More work is not what most cheesemakers need or can even contemplate. Let me tell you about our experience with wood shelves in our own aging room.

Wood Shelves at Pholia Farm

A few years ago we got permission from our inspectors to use wood shelves as long as we consulted with Dr. Lisbeth Goddik,Oregon State University’s Dairy Extension Specialist – a darned amazing woman. She suggested routine cleaning of the shelves with mild soap and warm water, then after rinsing with plain water either wiping the boards down with vinegar or a lactic acid bacteria wash. We did both. We marked which side of each shelf was treated with vinegar and which with bacteria. After aging the cheeses for many months, and before selling them, we swabbed the shelves and sent samples of the cheese to Agrimark lab. All results, for cheese and shelves, whether vinegar or lactic acid bacteria washed, were free from pathogens. So why did we stop? Ironically enough it was another aging room reality that is on the FDA’s hit list (not recent hits list…) cheese mites. I won’t go into too much detail about these little buggers (see one of my most popular posts for all of the itchy details), but what is pertinent is that the dark underside of the cheese sitting on the board was very desirable real estate for the mites. This required more frequent cheese rind labor, something that we were not prepared to do at that time. But I am now.

 So Why the Ruling?

Consider for a moment that the FDA is tasked with an enormous responsibility. As that responsibility grows and food systems expand it becomes more expeditious to simplify. This means generalized rules that apply to everyone – versus thoughtful, logical exceptions. Think about it, before a couple of decades ago, you would be hard pressed (like one of those fabulous wood aged European Comtes) to find any US made cheese that was aged in a cellar type situation with a natural rind. Consequently the paradigm for aging became a squeaky clean walk in cooler. The regulations that developed reflected that reality. With the looming burden of the Food Safety Modernization Act, it’s not surprising that they are now seeking to streamline and enforce existing regulations, rather than allow states to take the responsibility of allowing exceptions.

As we move forward as cheesemakers, I think we need to nurture a new paradigm, one in which the aging room is not treated as a processing room, but as a separate type of space in which a different set of GMP’s apply. When I was at a cheese science conference in England, it was repeatedly said that “The dairy/cheese plant is NOT A HOSPITAL”, nothing could be more true in a room in which you are counting on microbes to flourish.

What Can We Do?

I am a member of the American Cheese Society’s Regulatory and Academic committee. This morning (June 10th) we finalized the press release and position of the largest body of cheese professionals in the United States. (See the document at: http://www.cheesesociety.org/wp-content/uploads/2014/06/ACS-Statement-on-Safety-of-Aging-Cheese-on-Wood.pdf )

So support ACS (join if you are not a member), contact your state representatives, let the FDA know how you feel, and most importantly keep buying and making great cheese! Now, I am going to go put those beautiful Pacific maple shelves back in the aging room. Watch out cheese mites, I’m watching you!

References
The best overall summary of the topic: Donnelly, Catherine, Cheese and Microbes (2014), American Society for Microbiologists, 171-174
Ak, N. O., Cliver, D. O., & Kasparl, C. W. (1994). Decontamination of Plastic and Wooden Cutting Boards for Kitchen Use. Journal of Food Production, 57, 23–30.

Guillier, L., Stahl, V., Hezard, B., Notz, E., & Briandet, R. (2008). Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. International Journal of Food Microbiology, 128, 51–57.

Mariani, C., Briandet, R., Chamba, J.-F., Notz, E., Carnet-Pantiez, A., Eyoug, R. N., & Oulahal, N. (2007). Biofilm ecology of wooden shelves used in ripening the French raw milk smear cheese Reblochon de Savoie. Journal of Dairy Science, 90, 1653–1661. 

Mariani, C., Oulahal, N., Chamba, J.-F., Dubois-Brissonnet, F., Notz, E., & Briandet, R. (2011). Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control. 

Nese, AK, Cliver, Dean, Kaspar, C. (1994). Cutting Boards of Plastic and Wood Contaminated Experimentally with Bacteria. Journal of Food Protection, 57(1), 16–22.

Oulahal, N., Adt, I., Mariani, C., Carnet-Pantiez, A., Notz, E., & Degraeve, P. (2009). Examination of wooden shelves used in the ripening of a raw milk smear cheese by FTIR spectroscopy. Food Control. 

Schvartzman, M. S., Maffre, A., Tenenhaus-Aziza, F., Sanaa, M., Butler, F., & Jordan, K. (2011). Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk. International Journal of Food Microbiology, 145 Suppl 1, S31–S38. 

Zangerl, P., Matlschweiger, C., Dillinger, K., & Eliskases-Lechner, F. (2010). Survival of Listeria monocytogenes after cleaning and sanitation of wooden shelves used for cheese ripening. European Journal of Wood and Wood Products, 68(4), 415–419. 

 

One pot Lasagna Cheese

Lasagna Cheese – All in one pot recipe for Mozzarella and Ricotta

While writing an article for Culture magazine on how to make Burrata, I realized how easy it is to make both quick mozzarella and ricotta at the same time, literally within one hour. An email from a reader mentioned that it was her goal to make all of the ingredients for lasagna, so I put this recipe together for anyone out there who has wanted to do the same. This works great for traditional lasagna as well as spaghetti squash, eggplant, or gluten free noodles.I am giving directions using store bought milk, simply to address the availability for most, but any good quality milk will work. We, of course, use our goat milk. Enjoy!

Ingredients and Equipment 

1 gallon whole, pasteurized milk

1 ½ teaspoon citric acid dissolved in 1/8 cup cold, non-chlorinated water

1/8 teaspoon double strength rennet mixed into 1/8 cup cold, non-chlorinated water

1 Tablespoon salt

Heavy bottomed stainless steel pot

Large pot for water bath

Large skimmer ladle

Thermometer

Colander

Cheesecloth or butter muslin

Small sieve

Plate

Heavy gloves

Small bowl

Large bowl filled with 2 quarts cold water and 1 teaspoon salt

Make the Mozzarella

  1. Place smaller pot inside of larger and pour 3 quarts of the milk into the smaller pot. Set remaining quart aside for ricotta. Add water to larger pot so that it covers the sides of the smaller pot, but doesn’t make it float.
  2. Stir in citric acid solution.
  3. Slowly heat the milk to 95F and turn off heat or remove from burner, leaving in water bath whose temperature is 100-105F
  4. Stir in rennet solution using an up and down motion, not swirling, and let set without movement for 5 minutes. At the end of this time the milk should have coagulated into a heavy custard.
  5. Cut the coagulated milk into 3/8 inch columns and a few horizontal cuts at about the same interval. Let set for 5 minutes.
  6. Heat and agitate or stir the curds, depending upon their firmness (see sidebar), over 5 minutes to 105-108F.
  7. Line colander with cloth and ladle curds into cloth, cover and let drain, flipping curd mass as a whole inside cloth every 5 minutes.

Make the Ricotta

  1. Place the pot containing the whey on direct heat and bring temperature up to 175F, stirring. Remove any bits of curd remaining and add to colander.
  2. When 175F is reached, stir in 1 quart of milk. It should immediately coagulate into ricotta curds. Stir for a minute then use the small sieve to remove the curds from the hot whey. Reserve whey.
  3. Drain ricotta for about 3 minutes then place in bowl.

Stretch the Mozzarella

  1. Stir two tablespoons of salt into whey and verify temperature is still 175F
  2. Cut the mozzarella curd mass into 8 pieces. Drop into the hot whey for several moments. Check a chunk  for stretch. When curd is pliable, place the entire mass on aplate and gently work the curd by folding it in toward the center in a circular pattern. Reheat as needed to maintain a pliable texture. Repeat the process about 2 times, just until the curd becomes shiny, then form a ball or loaf.
  3. Place in the cold water bowl just long enough to firm it up, then serve or store for later. Use within a day or so for the best texture.

Mozzarella Tips and Tricks

Traditional, cultured mozzarella making is an all-day process. Quick “30 Minute” recipes have the advantage in near instant gratification – but at a price. Fast recipes for making stretched curd cheese rely upon a lucky combination of added acid, great milk, and deft craftsmanship. While mastering these types of recipes be patient with yourself and with the milk! Here are some tips for success:

  1. Measure the citric acid very carefully. If you use too little or too much the curd will not stretch. Often the amount must be adjusted to suit the milk for the next batch.
  2. Use the freshest milk possible. Do not use ultra pasteurized milk. Most milk available from the grocery store will make quite decent quick mozzarella, but it must be handled very gently. Often it cannot be stirred during step 6, but must instead be agitated by gently swirling or shaking the pot. Farm fresh milk will usually create a much more resilient and malleable curd.
  3. Think of working pasta filata cheese curd as if it is a delicate pastry, rather than bread dough. Too much kneading and working will result in a tough, rubber like texture.
  4. Don’t leave the curd in the hot whey any longer than necessary or you will overheat the fat and lose it from the curd.
  5. For more tips on working with quick mozzarella visit New England Cheesemaking Supply Companies helpful page: http://www.cheesemaking.com/store/pg/242-FAQ-Mozzarella.html

 

DIY – Listeria Testing

Should Small Producers do their own Environmental Testing? 

Environmental Listeria testing supplies

Recent regulations and high profile cases have made testing for listeria through the use of a certified laboratory somewhat discouraging. A positive test is no longer necessarily just between you and the lab. It is likely to be reported to the FDA. In some cases they must be notified. So what is a well-intentioned cheesemaker to do? For years we, farmstead and artisan cheesemakers and small dairy processors, have been told to NEVER test for pathogens on-site.  Too dangerous, too unpredictable, too little experience on the cheesemaker’s part.

After reading an article by respected dairy science educator Dr. Catherine Donnelly about environmental Listeria testing (see link below) ,it dawned on my –  if we do test for Listeria ourselves, AND we do find it, then we have way bigger concerns than not being certified lab technicians working in a certified facility. We are, in fact, growing it in our cheesemaking facilities. In addition, if good manufacturing practices are the norm, then you are unlikely to have any type of listeria in your plant, at least not for long, so testing will hopefully simply confirm negative results.  So why not learn the lowest risk, most accurate, least expensive way to test for this pathogen ourselves and become more aware, more proactive, and better producers of safe food? After all, if we can be trusted to produce safe food that goes directly into the mouths of people, why can we not be trusted to learn safe practices for self-testing?

Why are Listeria of such Concern?

Before I talk more about do-it-yourself tests, let’s talk about why Listeria is so high on the radar when it comes to food borne illness. (At the end of this article there is a link to the FDA’s booklet on food borne pathogens) The Listeria family are gram positive, facultative bacteria (meaning they can adapt to anaerobic conditions, even though their primary life process is aerobic). They are readily found in damp soil and moist environments. Fortunately, all but one species of Listeria are harmless to humans. L. monocytogenes, existing in several identifiable strains (serotypes,) is one of the most deadly causes of food borne illness. Even though the rate of listeriosis (a listeria infection) is low in comparison to other sicknesses caused by contaminated food, the death rate is the highest.

Once Listeria takes up residence in a food production facility, it is particularly difficult to get rid of – forming protective biofilms that are resistant to many common sanitizers, being salt tolerant (allowing their survival in brine and later growth on the surface of cheeses), able to grow at temperatures below freezing, and showing resistance to commonly used sanitizers through the activation of a pumping system (bacterial efflux pump) which can remove injurious substances from the bacterial cell. Recent cases of detection on non-food contact surfaces with recurrence later in product have increased the determination of enforcement officials to take action before product becomes tainted. Understandable.

Good manufacturing practices – part of a complete food risk reduction program – are designed to prevent the introduction of pathogens in the plant, remove them from the environment and surfaces when contact is unavoidable, and remove the likelihood of pathogen survival in products where their presence is a possibility – such as in raw milk cheese . Listeria, along with other pathogens, can be found in the dairy and in raw milk, so cheesemakers should assume that listeria will enter the plant and possibly the process – at some point. By assuming its presence and then taking steps to assure its destruction in product through process controls such as goal pH, final moisture content, proper aging, and of course, pasteurization. Post production contamination must also be addressed. Pathogens not regularly removed from the plant have the opportunity to form resistant biofilms and spread throughout the plant during cleaning practices which might offer them the opportunity to atomize and become airborne.

Listeria Testing Options

Insite swabs, easy to use, but high rate of false positives (brown)

Let’s go over the most common ways that L. monocytogenes (the one we need to worry about) and other Listeria family members can be detected. At all times while reading this, please remember that I am not a Ph. D, not a lab technician, not a medical doctor, and not advising you. I am sharing what we are doing and how it has affected our process, decision making, and knowledge.

  1. PCR assay – done only in specialized laboratories. Detects the presence of any portion of a bacterial cell (DNA). Does not differentiate between viable (cells that can grow, infect, and spread) or dead.
  2. Enrichment – A sample is enriched to encourage the growth of the bacteria being sought. Should only be done in a certified laboratory where proper safety techniques can be employed, including disposal. Can be L. monocytogenes specific. About 25-40.00 per test not including shipping.
  3. Non-enrichment plating – A sample is cultured on a plate without enrichment. Disposable plates, such as 3M Petrifilm, are commonly used. According to some (see links below) can be safely done when proper procedure is followed, by the producer. Qualitative and quantitative, non-specific for L. monocytogenes, but positive plates can be sent to a certified lab for confirmation.  About 7.50 per test (including peptone water and Quick-Swab)
  4. Self-contained swabs – a sample is cultured in a self-contained swab. Results are positive or negative (qualitative). High rate of false positives in cheese environments, see link at end of the article. About 5.00 per test.

How we did our Tests  – and what we found

Three duplicate tests, different results

I have included several links below for instructions, including a video, on properly using and interpreting the 3M environmental Listeria test plates. Since my goal is not to teach this technique, but to share our experience, I would encourage you to review these instructions and also seek the advice of a dairy science and laboratory specialist before you proceed.

In my first tests I used only the inexpensive and simple swabs by InSite. Boy did I want these to work, they were so easy to use!  I took six samples as directed and incubated for the initial time. After the first phase of incubation, two were presumptive positives. After the 2nd phase, four were presumptive positives. (see photo above) Needless to say, I was extremely disturbed, until I read the research (link below) indicating that false positives in a cheese environment are more common (up to 100% ) than not. The swab solution evidently also changes color in the presence of other bacteria common to cheese plants.

Next I sampled three surfaces with both the InSite swabs and 3M Quick swabs (to be plated after several other steps onto the 3M Petrifilm plates). I followed all instructions carefully, using aseptic techniques (thank you nursing degree for help learning those protocols) and incubated each in different incubators (as they both require slightly different temperatures and times). The samples, from a wall behind the vatunder the vat pedestal (where it is moist all the time and is sometimes not cleaned as well as the floor) , and the creamery’s main floor drain.  Of these, all three Petrifilm plates were negative and one InSite swab was presumptive positive.

Next I did a more extensive sampling in the creamery using only the Petrifilm environmental plates. I sampled a crack in the concrete floor where there is also a low spot that is wet longer than the rest of the floor, the base of the wall nearby, the wall behind and hidden by the sink, and a drain tube in a compressor in the aging room. All were negative.

Our plan is to continue with routine testing, picking new locations each time. By doing this I feel as though our cleaning and sanitizing program is more properly monitored. I also enjoy being “in the know” and on top of things!  You can bet if we do have any positive results that I will let you know if follow up tests show it eliminated – and what worked.  Our current regimen includes the routine use of gaseous ozone, and floor flooding with peracetic acid sanitizer. We also are extremely restrictive in regards to traffic in and out of the make room.

Small homemade incubator

Characteristics of a small, farmstead or artisan laboratory:

  1. Isolated from food production or dining areas, including sharing air handling or ventilation systems.
  2. Protected from untrained personnel, visitors, children, or trained but otherwise vulnerable personnel.
  3. Cleanable surfaces and equipment.
  4. A federal, state, and locally acceptable way to sterilize plates before disposal.
  5. Proper safety gear and apparel (not shared with food production facilities)
  6. Proper storage capability of new plates and swabs.
  7. Up to date instructions for the use of testing materials.
  8. Proper method for sterilization of plates after use, small autoclave can be purchased from Nelson Jameson (see below). Some sources suggest a soak in high concentration of chlorine or 190 proof alcohol.

LInks

Controlling Listeria – Environmental Plate Technology Hunts Down All Species, Catherine W. Donnelly, PhD  http://www.foodquality.com/details/article/834047/Controlling_Listeria.html?tzcheck=1&tzcheck=1

FDA’s “Bad Bugs” booklet:   http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM297627.pdf

3M YouTube video of how to use Listeria Petrifilm plateshttp://www.youtube.com/watch?v=f-x1PYFK19w

3M Guide and Warnings for proper use of Listeria petrifilm plates http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSufSevTsZxtUOY_15YtZevUqevTSevTSevTSeSSSSSS–&fn=34870664611_PEL.pdf

Performance of two commercial rapid methods for sampling and detection of Listeria in small-scale cheese producing and salmon processing environments. (Abstract only) http://www.ncbi.nlm.nih.gov/pubmed/22960690

Supplies

Nelson Jameson for all the supplies neededhttp://nelsonjameson.com/splash-page.html